[image: image1.jpg]Softsmith

Web Servers
The term web server can mean one of two things:

1. A computer program that is responsible for accepting HTTP requests from clients (user agents such as web browsers), and serving them HTTP responses along with optional data contents, which usually are web pages such as HTML documents and linked objects (images, etc.).

2. A computer that runs a computer program as described above.

Common features
Although web server programs differ in detail, they all share some basic common features.

1. HTTP: Every web server program operates by accepting HTTP requests from the client, and providing an HTTP response to the client. The HTTP response usually consists of an HTML document, but can also be a raw file, an image, or some other type of document. If some error is found in client request or while trying to serve it, a web server has to send an error response which may include some custom HTML or text messages to better explain the problem to end users.

2. Logging: usually web servers have also the capability of logging some detailed information, about client requests and server responses, to log files; this allows the webmaster to collect statistics by running log analyzers on log files.

In practice many web servers implement the following features also:

1. Authentication, optional authorization request (request of user name and password) before allowing access to some or all kind of resources.

2. Handling of static content (file content recorded in server's file-system(s)) and dynamic content by supporting one or more related interfaces (SSI, JSP, PHP, ASP, ASP.NET, Server API such as NSAPI, ISAPI, etc.).

3. HTTPS support (by SSL or TLS) to allow secure (encrypted) connections to the server on the standard port 443 instead of usual port 80.

4. Content compression (i.e. by gzip encoding) to reduce the size of the responses (to lower bandwidth usage, etc.).

5. Virtual hosting to serve many web sites using one IP address.

6. Large file support to be able to serve files whose size is greater than 2 GB on 32 bit OS.

7. Bandwidth throttling to limit the speed of responses in order to not saturate the network and to be able to serve more clients.

Origin of returned content
The origin of the content sent by server is called:

· Static if it comes from an existing file lying on a file-system;

· Dynamic if it is dynamically generated by some other program or script or application programming interface (API) called by the web server.

Serving static content is usually much faster (from 2 to 100 times) than serving dynamic content, especially if the latter involves data pulled from a database.

Path translation
Web servers are able to map the path component of a Uniform Resource Locator (URL) into:

· A local file system resource (for static requests).
· An internal or external program name (for dynamic requests).

For a static request the URL path specified by the client is relative to the Web server's root directory.

Consider the following URL as it would be requested by a client:

http://www.example.com/path/file.html

The client's web browser will translate it into a connection to www.example.com with the following HTTP 1.1 request:

GET /path/file.html HTTP/1.1

Host: www.example.com

The web server on www.example.com will append the given path to the path of its root directory. On UNIX machines, this is commonly /var/www/htdocs.
The result is the local file system resource:

/var/www/htdocs/path/file.html
The web server will then read the file, if it exists, and send a response to the client's web browser. The response will describe the content of the file and contain the file itself.

Load limits
A web server (program) has defined load limits, because it can handle only a limited number of concurrent client connections (usually between 2 and 60,000, by default between 500 and 1,000) per IP address (and TCP port) and it can serve only a certain maximum number of requests per second depending on:

· its own settings;

· the HTTP request type;

· content origin (static or dynamic);

· the fact that the served content is or is not cached;

· the hardware and software limits of the OS where it is working.

When a web server is near to or over its limits, it becomes overloaded and thus unresponsive.

Overload causes
At any time web servers can be overloaded because of:

· Too much legitimate web traffic (i.e. thousands or even millions of clients hitting the web site in a short interval of time. e.g. Slash-dot effect).
The Slashdot effect, also known as slash-dotting, is the phenomenon of a popular website linking to a smaller site, causing the smaller site to slow down or even temporarily close due to the increased traffic. The name stems from the huge influx of web traffic that result from the technology news site Slash-dot linking to underpowered websites. The effect has been associated with other websites or meta-blogs such as Fark, leading to terms such as being Farked effect. Typically, less robust sites are unable to cope with the huge increase in traffic and become unavailable – common causes are lack of sufficient data bandwidth, servers that fail to cope with the high number of requests, and traffic quotas. Sites that are maintained on shared hosting services often fail when confronted with the Slashdot effect.
· DDoS (Distributed Denial of Service) attacks;

· Computer worms that sometimes cause abnormal traffic because of millions of infected computers (not coordinated among them);

· XSS viruses can cause high traffic because of millions of infected browsers and/or web servers;

· Internet web robots traffic not filtered/limited on large web sites with very few resources (bandwidth, etc.);

· Internet (network) slowdowns, so that client requests are served more slowly and the number of connections increases so much that server limits are reached;

· Web servers (computers) partial unavailability, this can happen because of required or urgent maintenance or upgrade, HW or SW failures, back-end (i.e. DB) failures, etc.; in these cases the remaining web servers get too much traffic and become overloaded.

Overload symptoms
The symptoms of an overloaded web server are:

· Requests are served with (possibly long) delays (from 1 second to a few hundred seconds);

· 500, 502, 503, 504 HTTP errors are returned to clients (sometimes also unrelated 404 error or even 408 error may be returned);

· TCP connections are refused or reset (interrupted) before any content is sent to clients;

· In very rare cases, only partial contents are sent (but this behavior may well be considered a bug, even if it usually depends on unavailable system resources).

Anti-overload techniques
To partially overcome above load limits and to prevent overload, most popular web sites use common techniques like:

· Managing network traffic, by using:

· Firewalls to block unwanted traffic coming from bad IP sources or having bad patterns;

· HTTP traffic managers to drop, redirect or rewrite requests having bad HTTP patterns;

· Bandwidth management and traffic shaping, in order to smooth down peaks in network usage;
· Deploying web cache techniques;

· Using different domain names to serve different (static and dynamic) content by separate Web servers, i.e.:

· http://images.example.com

· http://www.example.com

· Using different domain names and/or computers to separate big files from small and medium sized files; the idea is to be able to fully cache small and medium sized files and to efficiently serve big or huge (over 10 - 1000 MB) files by using different settings;

· Using many Web servers (programs) per computer, each one bound to its own network card and IP address;

· Using many Web servers (computers) that are grouped together so that they act or are seen as one big Web server.
· Adding more hardware resources (i.e. RAM, disks) to each computer;

· Tuning OS parameters for hardware capabilities and usage;

· Using more efficient computer programs for web servers, etc.;

· Using other workarounds, especially if dynamic content is involved.

Internet Information Services 6.0
Internet Information Services (IIS) - formerly called Internet Information Server - is a set of Internet-based services for servers created by Microsoft for use with Microsoft Windows. It is the world's second most popular web server in terms of overall websites behind the industry leader Apache HTTP Server. As of November 2008 it served 34.49% of all websites according to Netcraft. The servers currently include FTP, SMTP, NNTP, and HTTP/HTTPS.

Versions
1. IIS 1.0, Windows NT 3.51 available as a free add-on

2. IIS 2.0, Windows NT 4.0
3. IIS 3.0, Windows NT 4.0 Service Pack 3

4. IIS 4.0, Windows NT 4.0 Option Pack

5. IIS 5.0, Windows 2000
6. IIS 5.1, Windows XP Professional, Windows MCE
7. IIS 6.0, Windows Server 2003 and Windows XP Professional x64 Edition

8. IIS 7.0, Windows Server 2008 and Windows Vista and Windows 7 (Pre-beta)

Security
Earlier versions of IIS were hit with a number of vulnerabilities, chief among them CA-2001-19 which led to the infamous Code Red worm; however, both versions 6.0 and 7.0 currently have no reported issues that affect them. In IIS 6.0 Microsoft opted to change the behavior of pre-installed ISAPI handlers many of which were culprits in the vulnerabilities of 4.0 and 5.0, thus reducing the attack surface of IIS. In addition, IIS 6.0 added a feature called "Web Service Extensions" that prevents IIS from launching any program without explicit permission by an administrator. With the current release IIS 7.0 the components are modularized so that only the required components have to be installed, thus further reducing the attack surface. In addition, security features are added such as URLFiltering which rejects suspicious URLs based on a user-defined rule set.

By default IIS 5.1 and lower run websites in-process under the SYSTEM account, a default Windows account with 'superuser' rights. Under 6.0 all request handling processes have been brought under a Network Services account with significantly fewer privileges so that should there be vulnerability in a feature or custom code it won't necessarily compromise the entire system given the sandboxed environment these worker processes run in. IIS 6.0 also contained a new kernel HTTP stack (http.sys) with a stricter HTTP request parser and response cache for both static and dynamic content.

Authentication Mechanisms
IIS 5.0 and higher support the following authentication mechanisms:

1. Basic access authentication
2. Digest access authentication
3. Integrated Windows Authentication
4. .NET Passport Authentication
Basic access authentication

In the context of an HTTP transaction, the basic access authentication is a method designed to allow a web browser, or other client program, to provide credentials – in the form of a user name and password – when making a request.

Before transmission, the username and password are encoded as a sequence of base-64 characters. For example, the user name “Admin” and password “smith” would be combined as “Admin: smith” – which is then encoded in Base64. Little effort is required to translate the encoded string back into the user name and password, and many popular security tools will decode the strings "on the fly".

Wrongly, people believe that this base-64 encoding is done because of security, to prevent it from being read directly by a person. Encoding is done, instead, to avoid breaking the HTTP protocol data encoding because of bizarre (and more secure) passwords containing special HTTP characters, such as newlines.

Advantages
One advantage of the basic access authentication is that it is supported by all popular web browsers. It is rarely used on publicly accessible Internet web sites but may sometimes be used by small, private systems. A later mechanism, digest access authentication, was developed in order to replace the basic access authentication and enable credentials to be passed in a relatively secure manner over an otherwise insecure channel.
Disadvantages
Although the scheme is easily implemented, it relies on the assumption that the connection between the client and server computers is secure and can be trusted. Specifically, the credentials are passed as plain text and could be intercepted easily. The scheme also provides no protection for the information passed back from the server.

Existing browsers retain authentication information indefinitely. HTTP does not provide a method for a server to direct clients to discard these cached credentials. This means that there is no effective way to "log out" without closing the browser. This is a significant defect that requires either further extensions to HTTP, or use of existing alternative techniques such as retrieving the page over SSL/TLS with an un-guessable string in the URL.

Example
Here is a typical transaction between an HTTP client and an HTTP server running on the local machine (localhost). It comprises the following steps.

1. The client asks for a page that requires authentication but does not provide a user name and password. Typically this is because the user simply entered the address or followed a link to the page.

2. The server responds with the 401 response code and provides the authentication realm.

3. At this point, the client will present the authentication realm (typically a description of the computer or system being accessed) to the user and prompt for a user name and password. The user may decide to cancel at this point.

4. Once a user name and password have been supplied, the client re-sends the same request but includes the authentication header.

5. In this example, the server accepts the authentication and the page is returned. If the user name is invalid or the password incorrect, the server might return the 401 response code and the client would prompt the user again.

Note: A client may preemptively send the authentication header in its first request, with no user interaction required.

Client request (no authentication):

GET /private/index.html HTTP/1.0

Host: localhost

(followed by a new line, in the form of a carriage return followed by a line feed).

Server response:

HTTP/1.0 401 UNAUTHORIZED

Server: HTTPd/1.0

Date: Sat, 10 Jan 2009 10:18:15 GMT

WWW-Authenticate: Basic realm="Secure Area"

Content-Type: text/html

Content-Length: 311

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd">

<HTML>

 <HEAD>

 <TITLE>Error</TITLE>

 <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=ISO-8859-1">

 </HEAD>

 <BODY><H1>401 Unauthorised.</H1></BODY>

</HTML>

Client request (user name "Aladdin", password "open sesame"):

GET /private/index.html HTTP/1.0

Host: localhost

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

(followed by a blank line, as before).

Server response:

HTTP/1.0 200 OK

Server: HTTPd/1.0

Date: Sat, 10 Jan 2009 10:18:15 GMT

Content-Type: text/html

Content-Length: 10476

(followed by a blank line and HTML text comprising of the restricted page).

Digest access authentication

HTTP Digest access authentication is one of the agreed methods a web server can use to negotiate credentials with a web user (using the HTTP protocol). Digest authentication is intended to supersede unencrypted use of the Basic access authentication, allowing user identity to be established securely without having to send a password in plain text over the network. Digest authentication is basically an application of MD5 cryptographic hashing with usage of nonce values to prevent cryptanalysis.

Impact of MD5 security on Digest authentication
The MD5 calculations used in HTTP Digest Authentication is intended to be "one way", meaning that it should be difficult to determine the original input when only the output is known. If the password itself is too simple, however, then it may be possible to test all possible inputs and find a matching output (a brute force attack) – perhaps aided by a dictionary or suitable look-up list. Ideally users should be forced to use long, non-trivial passwords.
In cryptography, MD5 (Message-Digest algorithm 5) is a widely used, partially insecure cryptographic hash function with a 128-bit hash value. As an Internet standard, MD5 has been employed in a wide variety of security applications, and is also commonly used to check the integrity of files. An MD5 hash is typically expressed as a 32 digit hexadecimal number.
Integrated Windows Authentication

Integrated Windows Authentication (IWA) is a term associated with Microsoft products that refers to the SPNEGO, Kerberos, and NTLMSSP authentication protocols with respect to SSPI functionality introduced with Microsoft Windows 2000 and included with later Windows NT-based operating systems. The term is used more commonly for the automatically authenticated connections between Microsoft Internet Information Services, Internet Explorer, and other Active Directory aware applications.

Overview
Integrated Windows Authentication uses the security features of Windows clients and servers. Unlike Basic or Digest authentication, initially, it does not prompt users for a user name and password. The current Windows user information on the client computer is supplied by the browser through a cryptographic exchange involving hashing with the Web server. If the authentication exchange initially fails to identify the user, the browser will prompt the user for a Windows user account user name and password.

Integrated Windows Authentication itself is not a standard or an authentication protocol. When IWA is selected as an option of a program (e.g. within the Directory Security tab of the IIS site properties dialog) this implies that underlying security mechanisms should be used in a preferential order. If the Kerberos provider is functional and a Kerberos ticket can be obtained for the target, and any associated settings permit Kerberos authentication to occur (e.g. Intranet sites settings in Internet Explorer), the Kerberos 5 protocol will be attempted. Otherwise NTLMSSP authentication is attempted. Similarly, if Kerberos authentication is attempted, yet it fails, then NTLMSSP is attempted. IWA uses SPNEGO to allow initiators and acceptors to negotiate either Kerberos or NTLMSSP.

Supported browsers
Integrated Windows Authentication relies on and works only with Internet Explorer and might not work over HTTP proxy servers. Therefore, it is best for use in intranets where all the clients are within a single domain. It may work with other Web browsers if they have been configured to pass the user's logon credentials to the server that is requesting authentication. In Mozilla Firefox, the names of the domains/websites to which the username and password is to be passed can be entered (comma delimited for multiple domains) in the "network.automatic-ntlm-auth.trusted-uris" value in about:config. Some websites may also require configuring the "network.negotiate-auth.delegation-uris" and "network.negotiate-auth.trusted-uris" values. Opera 9.01 and later versions can use NTLM/Negotiate, but will use Basic or Digest authentication if that is offered by the server.

Windows Live ID

Windows Live ID (originally Microsoft Passport, then .NET Passport, then briefly Microsoft Passport Network) is a single sign-on service developed and provided by Microsoft that allows users to log in to many websites using one account.

Product overview
Most of the web sites and applications that use Windows Live ID are Microsoft sites, services, and properties such as Hotmail, MSNBC, MSN, Xbox 360's Xbox Live, the .NET Messenger Service, Zoned or MSN subscriptions, but there are also several other companies affiliated with Microsoft that use it, such as Expedia. Users of Hotmail or MSN automatically have a Windows Live ID that corresponds to their accounts. Most recently user log in data has started to allow demographic targeting by advertisers using Microsoft adCenter.
Microsoft's Windows XP has an option to link a Windows user account with a Windows Live ID (appearing with its former names), logging users into Windows Live ID whenever they log into Windows.

Windows Live ID Web Authentication
On August 15, 2007, Microsoft released the Windows Live ID Web Authentication SDK, enabling web developers to integrate Windows Live ID into their websites running on a broad range of web server platforms - including ASP.NET (C#), Java, Perl, PHP, Python and Ruby.

Technical overview
A new user entering a commerce server will first be redirected to the nearest authentication server, which asks for username and password over an SSL-secured connection, unless the user can present a valid GLOBALAUTH-cookie. In return, a newly accepted user (a) has an encrypted time-limited GLOBALAUTH-cookie stored on his computer and (b) receives a triple DES encrypted ID-tag that previously has been agreed upon, between the authentication and the commerce server. This ID-tag is then sent to the commerce server, upon which the commerce server plants an encrypted LOCALAUTH-cookie in the user’s computer, also time-limited. The presenting of these LOCAL and GLOBAL cookies to various commerce and authentication servers prevents the need for authentication within the time of validity, as in the Kerberos protocol.

If the user actively logs out of Windows Live ID, these cookies will be removed; however, users are often confused by other commerce server logout functions, and unintentionally leave these cookies intact. The service depends on users allowing their browsers to ship cookies to servers other than the one they originated from.

PAGE
1
Web server – MS IIS
1 of 13

[image: image1.jpg]