
[image: image1.png]Softsmith

Qua/iry Enterprise Solutions

OpenSTA
Training Courseware

By

Softsmith Infotech

www.softsmith.com
Fundamentals of Web Application Performance Testing

Core Activities of Performance Testing

Performance testing is typically done to help identify bottlenecks in a system, establish a baseline for future testing, support a performance tuning effort, determine compliance with performance goals and requirements, and/or collect other performance-related data to help stakeholders make informed decisions related to the overall quality of the application being tested. In addition, the results from performance testing and analysis can help you to estimate the hardware configuration required to support the application(s) when you “go live” to production operation.

[image: image2.png]Core Performance Testing Activities

1. Identify Test Environment

ntify Performance Acceptance Criteria

3. Plan and Design Tests

4. Configure Test Environment

The performance testing approach used in this guide consists of the following activities:

1. Activity 1. Identify the Test Environment. Identify the physical test environment and the production environment as well as the tools and resources available to the test team. The physical environment includes hardware, software, and network configurations. Having a thorough understanding of the entire test environment at the outset enables more efficient test design and planning and helps you identify testing challenges early in the project. In some situations, this process must be revisited periodically throughout the project’s life cycle.

2. Activity 2. Identify Performance Acceptance Criteria. Identify the response time, throughput, and resource utilization goals and constraints. In general, response time is a user concern, throughput is a business concern, and resource utilization is a system concern. Additionally, identify project success criteria that may not be captured by those goals and constraints; for example, using performance tests to evaluate what combination of configuration settings will result in the most desirable performance characteristics.

3. Activity 3. Plan and Design Tests. Identify key scenarios, determine variability among representative users and how to simulate that variability, define test data, and establish metrics to be collected. Consolidate this information into one or more models of system usage to be implemented, executed, and analyzed.

4. Activity 4. Configure the Test Environment. Prepare the test environment, tools, and resources necessary to execute each strategy as features and components become available for test. Ensure that the test environment is instrumented for resource monitoring as necessary.

5. Activity 5. Implement the Test Design. Develop the performance tests in accordance with the test design.

6. Activity 6. Execute the Test. Run and monitor your tests. Validate the tests, test data, and results collection. Execute validated tests for analysis while monitoring the test and the test environment.

7. Activity 7. Analyze Results, Report, and Retest. Consolidate and share results data. Analyze the data both individually and as a cross-functional team. Reprioritize the remaining tests and re-execute them as needed. When all of the metric values are within accepted limits, none of the set thresholds have been violated, and all of the desired information has been collected, you have finished testing that particular scenario on that particular configuration.

Why Do Performance Testing?

At the highest level, performance testing is almost always conducted to address one or more risks related to expense, opportunity costs, continuity, and/or corporate reputation. Some more specific reasons for conducting performance testing include:

Assessing release readiness by:

Enabling you to predict or estimate the performance characteristics of an application in production and evaluate whether or not to address performance concerns based on those predictions. These predictions are also valuable to the stakeholders who make decisions about whether an application is ready for release or capable of handling future growth, or whether it requires a performance improvement/hardware upgrade prior to release.

Providing data indicating the likelihood of user dissatisfaction with the performance characteristics of the system.

Providing data to aid in the prediction of revenue losses or damaged brand credibility due to scalability or stability issues, or due to users being dissatisfied with application response time.

Assessing infrastructure adequacy by:

Evaluating the adequacy of current capacity.

Determining the acceptability of stability.

Determining the capacity of the application’s infrastructure, as well as determining the future resources required to deliver acceptable application performance.

Comparing different system configurations to determine which works best for both the application and the business.

Verifying that the application exhibits the desired performance characteristics, within budgeted resource utilization constraints.

Assessing adequacy of developed software performance by:

Determining the application’s desired performance characteristics before and after changes to the software.

Providing comparisons between the application’s current and desired performance characteristics.

Improving the efficiency of performance tuning by:

Analyzing the behavior of the application at various load levels.

Identifying bottlenecks in the application.

Providing information related to the speed, scalability, and stability of a product prior to production release, thus enabling you to make informed decisions about whether and when to tune the system.
Project Context

For a performance testing project to be successful, both the approach to testing performance and the testing itself must be relevant to the context of the project. Without an understanding of the project context, performance testing is bound to focus on only those items that the performance tester or test team assumes to be important, as opposed to those that truly are important, frequently leading to wasted time, frustration, and conflicts.

The project context is nothing more than those things that are, or may become, relevant to achieving project success. This may include, but is not limited to:

· The overall vision or intent of the project

· Performance testing objectives

· Performance success criteria

· The development life cycle

· The project schedule

· The project budget

· Available tools and environments

· The skill set of the performance tester and the team

· The priority of detected performance concerns

· The business impact of deploying an application that performs poorly

Some examples of items that may be relevant to the performance-testing effort in your project context include:

· Project vision. Before beginning performance testing, ensure that you understand the current project vision. The project vision is the foundation for determining what performance testing is necessary and valuable. Revisit the vision regularly, as it has the potential to change as well.

· Purpose of the system. Understand the purpose of the application or system you are testing. This will help you identify the highest-priority performance characteristics on which you should focus your testing. You will need to know the system’s intent, the actual hardware and software architecture deployed, and the characteristics of the typical end user.

· Customer or user expectations. Keep customer or user expectations in mind when planning performance testing. Remember that customer or user satisfaction is based on expectations, not simply compliance with explicitly stated requirements.

· Business drivers. Understand the business drivers – such as business needs or opportunities – that are constrained to some degree by budget, schedule, and/or resources. It is important to meet your business requirements on time and within the available budget.

· Reasons for testing performance. Understand the reasons for conducting performance testing very early in the project. Failing to do so might lead to ineffective performance testing. These reasons often go beyond a list of performance acceptance criteria and are bound to change or shift priority as the project progresses, so revisit them regularly as you and your team learn more about the application, its performance, and the customer or user.

· Value that performance testing brings to the project. Understand the value that performance testing is expected to bring to the project by translating the project- and business-level objectives into specific, identifiable, and manageable performance testing activities. Coordinate and prioritize these activities to determine which performance testing activities are likely to add value.

· Project management and staffing. Understand the team’s organization, operation, and communication techniques in order to conduct performance testing effectively.

· Process. Understand your team’s process and interpret how that process applies to performance testing. If the team’s process documentation does not address performance testing directly, extrapolate the document to include performance testing to the best of your ability, and then get the revised document approved by the project manager and/or process engineer.

· Compliance criteria. Understand the regulatory requirements related to your project. Obtain compliance documents to ensure that you have the specific language and context of any statement related to testing, as this information is critical to determining compliance tests and ensuring a compliant product. Also understand that the nature of performance testing makes it virtually impossible to follow the same processes that have been developed for functional testing.

· Project schedule. Be aware of the project start and end dates, the hardware and environment availability dates, the flow of builds and releases, and any checkpoints and milestones in the project schedule.
The Relationship between Performance Testing and Tuning

When end-to-end performance testing reveals system or application characteristics that are deemed unacceptable, many teams shift their focus from performance testing to performance tuning, to discover what is necessary to make the application perform acceptably. A team may also shift its focus to tuning when performance criteria have been met but the team wants to reduce the amount of resources being used in order to increase platform headroom, decrease the volume of hardware needed, and/or further improve system performance.

Cooperative Effort

Although tuning is not the direct responsibility of most performance testers, the tuning process is most effective when it is a cooperative effort between all of those concerned with the application or system under test, including:

· Product vendors

· Architects

· Developers

· Testers

· Database administrators

· System administrators

· Network administrators

Without the cooperation of a cross-functional team, it is almost impossible to gain the system-wide perspective necessary to resolve performance issues effectively or efficiently.

The performance tester, or performance testing team, is a critical component of this cooperative team as tuning typically requires additional monitoring of components, resources, and response times under a variety of load conditions and configurations. Generally speaking, it is the performance tester who has the tools and expertise to provide this information in an efficient manner, making the performance tester the enabler for tuning.

Tuning Process Overview

Tuning follows an iterative process that is usually separate from, but not independent of, the performance testing approach a project is following. The following is a brief overview of a typical tuning process:

· Tests are conducted with the system or application deployed in a well-defined, controlled test environment in order to ensure that the configuration and test results at the start of the testing process are known and reproducible.

· When the tests reveal performance characteristics deemed to be unacceptable, the performance testing and tuning team enters a diagnosis and remediation stage (tuning) that will require changes to be applied to the test environment and/or the application. It is not uncommon to make temporary changes that are deliberately designed to magnify an issue for diagnostic purposes, or to change the test environment to see if such changes lead to better performance.

· The cooperative testing and tuning team is generally given full and exclusive control over the test environment in order to maximize the effectiveness of the tuning phase.

· Performance tests are executed, or re-executed after each change to the test environment, in order to measure the impact of a remedial change.

· The tuning process typically involves a rapid sequence of changes and tests. This process can take exponentially more time if a cooperative testing and tuning team is not fully available and dedicated to this effort while in a tuning phase.

· When a tuning phase is complete, the test environment is generally reset to its initial state, the successful remedial changes are applied again, and any unsuccessful remedial changes (together with temporary instrumentation and diagnostic changes) are discarded. The performance test should then be repeated to prove that the correct changes have been identified. It might also be the case that the test environment itself is changed to reflect new expectations as to the minimal required production environment. This is unusual, but a potential outcome of the tuning effort.

Performance, Load, and Stress Testing

Performance tests are usually described as belonging to one of the following three categories:

· Performance testing. This type of testing determines or validates the speed, scalability, and/or stability characteristics of the system or application under test. Performance is concerned with achieving response times, throughput, and resource-utilization levels that meet the performance objectives for the project or product. In this guide, performance testing represents the superset of all of the other subcategories of performance-related testing.

· Load testing. This subcategory of performance testing is focused on determining or validating performance characteristics of the system or application under test when subjected to workloads and load volumes anticipated during production operations.

· Stress testing. This subcategory of performance testing is focused on determining or validating performance characteristics of the system or application under test when subjected to conditions beyond those anticipated during production operations. Stress tests may also include tests focused on determining or validating performance characteristics of the system or application under test when subjected to other stressful conditions, such as limited memory, insufficient disk space, or server failure. These tests are designed to determine under what conditions an application will fail, how it will fail, and what indicators can be monitored to warn of an impending failure.

Baselines

Creating a baseline is the process of running a set of tests to capture performance metric data for the purpose of evaluating the effectiveness of subsequent performance-improving changes to the system or application. A critical aspect of a baseline is that all characteristics and configuration options except those specifically being varied for comparison must remain invariant. Once a part of the system that is not intentionally being varied for comparison to the baseline is changed, the baseline measurement is no longer a valid basis for comparison.

With respect to Web applications, you can use a baseline to determine whether performance is improving or declining and to find deviations across different builds and versions. For example, you could measure load time, the number of transactions processed per unit of time, the number of Web pages served per unit of time, and resource utilization such as memory usage and processor usage. Some considerations about using baselines include:

· A baseline can be created for a system, component, or application. A baseline can also be created for different layers of the application, including a database, Web services, and so on.

· A baseline can set the standard for comparison, to track future optimizations or regressions. It is important to validate that the baseline results are repeatable, because considerable fluctuations may occur across test results due to environment and workload characteristics.

· Baselines can help identify changes in performance. Baselines can help product teams identify changes in performance that reflect degradation or optimization over the course of the development life cycle. Identifying these changes in comparison to a well-known state or configuration often makes resolving performance issues simpler.

· Baselines assets should be reusable. Baselines are most valuable if they are created by using a set of reusable test assets. It is important that such tests accurately simulate repeatable and actionable workload characteristics.

· Baselines are metrics. Baseline results can be articulated by using a broad set of key performance indicators, including response time, processor capacity, memory usage, disk capacity, and network bandwidth.

· Baselines act as a shared frame of reference. Sharing baseline results allows your team to build a common store of acquired knowledge about the performance characteristics of an application or component.

· Avoid over-generalizing your baselines. If your project entails a major reengineering of the application, you need to reestablish the baseline for testing that application. A baseline is application-specific and is most useful for comparing performance across different versions. Sometimes, subsequent versions of an application are so different that previous baselines are no longer valid for comparisons.

· Know your application’s behavior. It is a good idea to ensure that you completely understand the behavior of the application at the time a baseline is created. Failure to do so before making changes to the system with a focus on optimization objectives is frequently counterproductive.

· Baselines evolve. At times you will have to redefine your baseline because of changes that have been made to the system since the time the baseline was initially captured.

Benchmarking

Benchmarking is the process of comparing your system’s performance against a baseline that you have created internally or against an industry standard endorsed by some other organization.

In the case of a Web application, you would run a set of tests that comply with the specifications of an industry benchmark in order to capture the performance metrics necessary to determine your application’s benchmark score. You can then compare your application against other systems or applications that also calculated their score for the same benchmark. You may choose to tune your application performance to achieve or surpass a certain benchmark score. Some considerations about benchmarking include:

· You need to play by the rules. A benchmark is achieved by working with industry specifications or by porting an existing implementation to meet such standards. Benchmarking entails identifying all of the necessary components that will run together, the market where the product exists, and the specific metrics to be measured.

· Because you play by the rules, you can be transparent. Benchmarking results can be published to the outside world. Since comparisons may be produced by your competitors, you will want to employ a strict set of standard approaches for testing and data to ensure reliable results.

· You divulge results across various metrics. Performance metrics may involve load time, number of transactions processed per unit of time, Web pages accessed per unit of time, processor usage, memory usage, search times, and so on.

Summary

Performance testing helps to identify bottlenecks in a system, establish a baseline for future testing, support a performance tuning effort, and determine compliance with performance goals and requirements. Including performance testing very early in your development life cycle tends to add significant value to the project.

For a performance testing project to be successful, the testing must be relevant to the context of the project, which helps you to focus on the items that that are truly important.

If the performance characteristics are unacceptable, you will typically want to shift the focus from performance testing to performance tuning in order to make the application perform acceptably. You will likely also focus on tuning if you want to reduce the amount of resources being used and/or further improve system performance.

Performance, load, and stress tests are subcategories of performance testing, each intended for a different purpose.

Creating a baseline against which to evaluate the effectiveness of subsequent performance-improving changes to the system or application will generally increase project efficiency.

Need For Load Testing

Any multi-user application needs to face the concurrent access some day or the other. Before deploying the application and then exposing the application for multiple users it is better we test it and then do the deployment. This process is load testing.

Minimal Infrastructure - We cannot gather hundreds or thousands of people to carry out concurrent user tests and this will not be possible for large number of users for longer time

Reliable - Tests perform precisely the same operations each time they are run, thereby eliminating human error.

Repeatable - We can test how the application reacts after repeated execution of the same operations, for longer durations for many days

Programmable - We can program sophisticated tests that bring out hidden information.

Comprehensive - We can build a suite of tests that covers every feature in our application.

Reusable - We can reuse tests on different versions of an application, even if the user interface changes.

Open STA Features

The following are the key features of Open STA
· Record Single user scripts and debug scripts (Record Script)

· Configure and Run Performance scenarios (Performance Tests and schedule)
· Run tests in a distributed manner (Names Server)

· Analyze graphs (Performance Report)

Load Test Process Steps

· Plan

· Create scripts

· Create scenarios

· Run & monitor scenarios

· Analyze results
Load Test Planning

· Identify most frequently used transactions

· Identify potential number of users

· Identify potential number of concurrent users

· Apply 10:1 or 5:1 ratio for logged-in Vs concurrent users

· Identify the production platform size and configuration

· Identify the data to be used for testing

· Identify the different real-time usage combinations of test scenarios

· Identify the load test run duration

· Identify what kind of information is transmitted between server and client

· Plan load testing only after functional stability of the product is achieved

· Discuss with other stakeholders like network admin, database admin, server admin and others on what information is required for them

· Chalk out the software configurations/settings for web server, app server and database server

Functional Testing Vs Load Testing

· If preconditions are met and steps are followed, function test results are defined. Load test results are always unpredictable

· Functional test results do not change more than 5% when moved from one configuration to the other. Load Test results may even nose-dive!

· Functional test happens on a daily basis; but load test is not that frequent

· Load test results depend on database volume as well and they change when number of users change
Load Testing Checklist

· Do we have the near-production hardware configuration? If not what is the delta between test hardware and production hardware?

· Is the tool capable of recording the requests based on the protocols used by the application (e.g. HTTPS) and able to replay the same?

· Is the product functionally cleared before load testing?

· Can we get numbers on the user counts from customer, based on past records?

· Is the data pool containing unique data?

· Is the trace log enabled for database and web servers?

· Are the requests distributed equally to different boxes? Is there a load balancer?

· Is there a facility in the tool to mimic different line speeds?

· Is there a facility in the tool to mimic different browser versions?

· Is there a facility in the tool to selectively log messages?

· Is there a facility in the tool to export the data in xls format?

· Is there a facility in the tool to auto-synchronize concurrent requests?

· If the application uses queues, the queue size must be monitored during test runs.

· Do the tests need runs with and without proxy servers?

· Do the tests need runs with and without firewalls?

Load Test Guidelines

· Number of users Vs response time must not be linear

· Stress test needs to be done for shorter durations and not for longer durations

· To the extent possible, let the data pool contain more unique data than what is needed

· The load generating client machines must not be operated at capacities beyond 80% for CPU and memory

· Avoid enabling detailed log information in the tool which will take more disk IO in the client machines

· Script must be parameterized for accessing the same application with different configurable URLs. So if the application is moved form one box to the other, the script can be reused

· Wherever needed, use rendezvous points to synchronize the requests before any form submission actions in the script. This ensures the simultaneous hits at the time of form submission

· If there is a possibility, disable downloading image files as image files are not downloaded every time in real time usage.

· Check the consistency of response time over a period of elapsed time and compare it with different test runs

· All successful requests must have been submitted and the log files must match. If the requests trigger data base operations, the same must have been recorded in database.

· The queues size must be minimal at any given point of time.

· Most of the time the database and the business logic layer need to be doubted first before the web server is doubted.

Open STA 1.4.4
The OpenSTA toolset suppliesperformance testing software for evaluating Web Application Environments (WAEs). It is built on the OpenSTA Architecture which is a distributed testing architecture that enables you to create and run versatile production monitoring and HTTP/S load Tests. It can be employed at all stages of WAE development as well as being used to continuously monitor system performance once an WAE goes live.

Use the OpenSTA toolset to develop Tests which monitor and collect performance data from live WAEs within a production environment and to create load Tests which include HTTP/S load element, known as Scripts, to help assess the performance of WAEs during development. the OpenSTA toolset enables you to run Tests against the same target system within both load testing and production monitoring scenarios. This means that you can directly compare the performance of the target system within these two environments.

Within the OpenSTA toolset, use Commander to create Collectors and Scripts, then create and run the Tests which incorporate them in order to generate the performance data you need.

Installing OpenSTA

System Requirements for Installation

Make sure your PC conforms to the following hardware and software requirements:

Hardware Specifications

· Pentium 4 processor

· 512 MB RAM

· 1 GB free hard disk space required for installation.

Web Browsers Supported for HTTP Recording in Script Modeler

· Internet Explorer 5

· Internet Explorer 6

· Netscape

Software Prerequisites

· Microsoft Windows 2000 or Microsoft Windows NT 4.0, with at least service pack 5

· Windows Installer for Windows NT 1.1, instmsi.exe. This is not part of the basic installation of Windows NT 4.0. It can be downloaded from http://opensta.org/.

· An up-to-date HTML Help system, the update may be downloaded from msdn.microsoft.com; search for Microsoft HTML Help.

· OpenSTA also requires version 2.5, or later, of Microsoft Data Access Components MDAC_Typ.exe. Visit http://opensta.org/ for download details.

Installing OpenSTA

1. Close down all applications.

· 2. Locate the OpenSTA Microsoft Windows Installer Package, .MSI file, and double-click.

 Or click Start > Run. Click Browse and locate the executable file or type the path and file

 name, then click OK. After the install preparation is complete, the Welcome window

 appears.

 Note: You may need Administrator rights depending on your computer's configuration.

3. Click Next.

4. In the Select Installation Folder window, enter the installation path in the text box. Make

 sure the location you select for the installation has at least 20MB of free space.

 Note: This location is the default location for the automatic creation of the Repository when

 you first run Commander. We recommend you Select a New Repository Path after startup.

Features of OpenSTA
· Commander

· Scripts

· Tests

· Collectors

· OpenSTA Name Server

Commander Startup Instructions
Commander is the Graphical User Interface that runs within the OpenSTA Architecture and functions as the front end for all Test development activity. It is the program you need to run in order to use HTTP/S Load.

Launch Commander

· Click Start > Programs > OpenSTA > OpenSTA Commander.

Or,

1. Click Start > Run.

2. Enter the application path and program file:

\Program Files\OpenSTA\BaseUI\OSCommander.exe

or click Browse, then locate and double-click the program file.

3. Click OK to launch Commander.

Note: When you startup Commander for the first time an empty Repository is automatically created in the program directory structure.

 The Commander Interface

[image: image3.png]The main features of the Commander interface are detailed below:

Tite Bar.
Loy — Y

Toobor ——— B

Collectors
Test Pane Tabs —

Task Groups
in the Test table

L N T
P iwce §samnm -t B wer 3 o
7612 v ot 8 s [5] 1

7 0oty & ims ot Brben || &

Default Include files
1

Scripts.

Test Pane

[accs] o Tomwaton orcorgoon

Mo e o ok [3]

Repasitary Window —
Praperties Window
Tests

Smuws Bar

Note: The Test illustrated above contains Script-based and Collector-based Task
Groups.

[image: image4.png]Create a New Script

1

In Commander select File > New Script > HTTP.
Or: In the Repository Window, right-click (1 Scripts, and select New Script > HTTP.

The Script appears in the Repasitory Window with a small crassed red circle over the Script ican ., indicating that
the file has na content. As saon as you open the Script and recard a Web session, the icon changes fo reflect this and

appears
Give the new Script a name within the Repository Window, which must be an OpenSTA Dataname, with the exception
that the name can be up to 60 characters long, then press Return.

Dauble-slick the new Seript icon S, to launch Seript Modeler.

Click the Record button @/, in the Capture/Replay Toolbar, or select Capture > Record, to begin the HTTP/S
capture process

This action launches the Gatewsy and the Web browser you have selected.

Your browser's Home page Internet option is overridden by Seript Modsler when you start recording. The setting is
replaced with about:blank, which specifies that your home page will be a blank HTHL page. This ensures that your
normal Home page is not launched and recorded in the Seript,

Note: The Gateway is launched in Local recording mode by default unless you have chosen Remote recording mode
Type in 3 URL and hit Return or select 3 URL from the browser's URL Address bar. Then use the browser 35 normal to
perform the actions you want to record in your Script

Tip: Use the Add Comment button | in the Capture/Replay Toolbar to add comments while you are recording s Web
session, or select Capture > Insert Comments. They are used to assist you when monitoring a sinale stepping
session. The time taken to add a comment is not recorded in the Seript.

After you have completed the browser actions you need, switch back to Script Modeler from the browser and dlick the

Stop button B, in the Capture/Replay Toolbar to end the recording. O, closs the browser.

Tip: If you have mare than one Script to record use M to end a recarding, to save repeatedly closing and apening
the browser.
When you have finished recarding the Seript the SCL formatted data is displayed in the Seript Pane as llustrated

below

[image: image5.png]SCL comments

Envronment section —}

Defnitons Secton __|

Varible cefniars. —|

Timers

Caokies

Code Section

T bescxiption =
Tnclude M Ressonse_covs. zucr
CUARACTER 65535 VAR FHE.
Tntegor REcuReT_soMEOUT

T timr roowuni 2
Timer = eRoorw
naracTER: 1024

PR

[image: image6.png]10

Before you save your new Script you need to compile it using the Syntax Check option to ensure the validity of the
recording

Select Capture > Syntax Check or click &, in the Capturs/Replay Toolbar, Compilation results are reported in the
Output Pane. If compilation is unsuccessful, you may need to re-record the Seript or modsl the contents to resolve the
problem

Note: You can record over the top of an existing Seript until you achisve the content you need
after compilation replay the Seript to check the activity you have recorded

Select Capture > Replay or dlick 1., in the Capture/Replay Toolbar

When you have finished recarding, click
File > Save.

Select File > Close to close the current Script or File > Exit to exit Script Modeler.

Note: If you have unsaved Scripts open in Script Modeler, you are automatically prompted to save them before the
program closes. Closing down Script Modeler aiso closes the browser which restores your original browser settings

,in the Standard Toolbar to save your Script in the Repository, or dlick

[image: image7.png]The Script Recording Process

Seript Modeler creates a Script exactly as the browser requested the Web pages and their contents. They are created by the,
Gateway and consist of SCL code, including GET, POST and HEAD commands, which represent corresponding HTTP/S
instructions.

Seripts represent HTTP/S browser requests in SCL cade and are saved in a HTP file. During the same recarding session the
corresponding WAE responses are recorded by the Gateway in a AL file. This includes DOM, HTHL and Web page structure
data. The full detall of 2 Web session is stared in these two files

after you have clicked the Record button @ in the Capture/Replay Toolbar and entered the first URL in your browser's
Address text box, the WAE responds by sending the HTTP/S data that forms the content of the Web page displayed by your
brawser.

Loading a Web page involves parsing or compiling the Web pags structure from the raw HTTP/S data returned by the WAE in
response to the URL or PRIMARY GET. The cantent is then rendered on screen by the browser whilst concurrently making
additional, asynchranous requests an ather TCP connectians via secondary GETS for the remaining contents of the Web page|
The browser continues ta issue requests and render any remaining content until the Web page is fully loaded. The Gateway
records and formats this information.

The Seript Modeler HTTP/S capture process is illustrated below:

OpenSTA Web
Console Application

——p [Gateway || ——p. —
Vi 1L

wre| [A
soripe| | e
e

Browser requests hit the targst WA via the Gateway, across the Internet or other network. Browser requests are recorded
by the Gateway 25 a Script (HTP file). WAE responses are recorded by the Gateway in a -ALL file

Note: OpenSTA Cansale refers to a computer which has an installation of OpenSTA. This includes the OpenSTA Architecturs.
and Commander and it may also include the Repository, where all Test related files and results are stored. The PC will also
have a Web browser installed and is typically the home for the Gateway. In this diagram the Gateway is shown as separated
from the OpenSTA Console to clarify the Script recording process

[image: image8.png]Capture/Replay Toolbar

The Capture/Replay Toolbar is used to control the Script recording process. It is located below the Menu Bar in the Seript
Modeler window. You can use it to record multiple Scripts during the same Web browser session

Recorarepiny 1|
emup ! S

1
ij
Stop
Pause
Replay

Add Comment.
Synmax Check

Click the Recard button ‘@, in the Capture/Replay Toolbar ta begin the HTTP/S capture process. This action launches your
Web browser which in turn activates the Gatewsy, or Proxy Server. The HTTP/S traffic generated during the recording
session is intercepted by the Gateway and the HTTP/S requests are encoded to produce a Script written in SCL. This data is
displayed in the Script Pane after the recording process is complete. The HTHL pages accessed during the Web session are
recorded in a separate file and can be displayed in the Query Results Pane.

Use the Add Comment button |, to add comments during a recording session. They are used to assist you when
monitoring a single stepping session.

Use the Pause button I to suspend seript recording. click 8 to resume recording

When you have recorded everything you need, end your recording session by dlicking the Stop button
the brawser,

Jor dlose down

Use the Syntax Check button S5 to compile the current Seript. The SCL compiler is launched and generates an object file
called a .TOF file. This is the file that is executed by 3 Task Group Executer when a Test is run

Use the Replay button 2l to compile the current Script and replay it within Seript Modsler to ensure that it is valid. Replay
activity can be monitored using the Output Pane.

[image: image9.png]Create Additional Scripts
Once you have launched Script Modele you can record addiionl Scrits

1. In Script Modsler, select File > New.

shorteuts cick B, nthe standard Teolbar, or press ctrl +

2. Click the Recard button
capture process

3. In the Soript Name dialog box, give the new Script a name, which must be an 0penSTA Dataname, with the exception
that the name can be up to 60 characters long.

,in the Capture/Replay Taalbar, or select Capture > Record, ta begin the HTTP/S

SCL Representation of Scripts
SCL, Script Control Language, is a procedural scripting language. Within the Modeler, it is used to write the Scripts which define the content of your Tests. Make use of SCL commands to model Scripts and develop the Test scenarios you need. Refer to the SCL Reference Guide for more information.

When a Script is recorded through the Gateway, the raw HTTP/S traffic is represented using SCL code. Scripts are written using SCL code which enables you to model them. This gives you control of the content of the Tests you create and enables you to simulate the Test scenarios required no matter how complex. Model a Virtual User by using the menu options available or by keying in the SCL commands you need. Scripts function as interactive text files, which you can edit and manipulate using methods you will be familiar with if you have used any type of text editor. You can enter text, cut and paste, search and replace text elements and variables, scroll up and down through the file and bookmark text lines.

When you open a Script you will notice that the data it contains is represented using syntax coloring to help identify the different elements. For example, SCL keywords and commands are represented in blue. A Script is divided into three sections represented by the following SCL keywords; Environment, Definitions and Code.

The Environment Section

The Environment section is always the first part of a Script. It is introduced by the mandatory Environment keyword. It is preceded by comments written by the Gateway which note the browser used and the creation date.

This section is used to define the global attributes of the Script including a Description, if you choose to add one, the Mode and Wait units, for example:

 !Browser:IE5

 !Date : 11-Dec-00

 Environment

 Description ""

 Mode HTTP

 Wait UNIT MILLISECONDS

The Definitions Section

The Definitions section follows the Environment section and is introduced by the mandatory Definitions keyword. It contains all the definitions used in the Script, including definitions of variables and constants, as well as declarations of Timers and file definitions.

 Definitions

 ! Standard Defines

 Include "RESPONSE_CODES.INC"

 Include "GLOBAL_VARIABLES.INC"

The RESPONSE_CODES.INC is an include file which contains the definitions of constants which correspond to HTTP/S response codes.

The GLOBAL_VARIABLES.INC file is used to hold variable definitions of global and Script scope which are shared by Virtual Users during a Test-run.

The Code Section
The Code section follows the Definitions section and is introduced by the mandatory Code keyword. It contains commands that represent the Web-activity you have recorded and define the Script's behavior. The Code section is composed of SCL commands that control the behavior of the Script.

Open a Script from Commander

1. In the Repository Window within Commander, double-click [image: image10.png]

 Scripts, to expand the directory structure.

2. Double-click on the Script (or Include file) you want to open represented by [image: image11.png]

or[image: image12.png]

.

Note: [image: image13.png]

indicates a new Script before HTTP/S traffic has been recorded

Variable Scope Options

The Scope of a variable determines which Virtual Users and Scripts can make use them during a Test-run. The default variable scope is Local.

There are four variable scope settings available:

Local Scope Variables

Local scope variables are only accessible to the Virtual User running the Script in which they are defined. They cannot be accessed by any other Virtual Users or Scripts. Similarly, a Script cannot access any of the local variables defined within any of the Scripts it calls.

A Local scope variable can only be used by Virtual User 1 in Script 1, Virtual User 1 in Script 2, Virtual User 2 in Script 1, etc. Each Virtual Users copy of the variable can only be referenced and used by them.

[image: image14.png]Viual Virasl Virwsl Vircsl
User | Userd Userd Userd

BEIREIREIRE]

Seripe2

T moix represents ur Viruwal Users
runnig the me modhar Test compred of
oy

“The bsck squares represent the scope of 3
Localvarable durings Tescrun

Sarpe3

Serpes

<fve]-re-Hvel
-pre|-{ve| e
fve-fref{re]
-pre|-fre|jre

Script Scope Variables

Script scope variables can be accessed by any Virtual User running the Script in which they are defined.

A Script scope variable can be used by Virtual Users 1 to 4 in Script 1 or by Virtual Users 1 to 4 in Script 2 etc. There is only one copy of the variable which can be shared by any user. It can only be referenced and used within the Script that it is defined.

[image: image15.png]Virual Virwal Virwal Virual
User | Userd Userd Userd

Sere 1
M e]

Seripe2

Thi motri represens four Virua! Users
runnig the ame modulr Test comprised of
P s

recargies repreent thescopeof
bl durig Tes run.

=3 939
“fg—e—e 29
9939

Scrpes |

Thread Scope Variables

Thread scope variables are accessible from any Script run by the Virtual User, or thread, that defines them.

A Thread scope variable can be used by Virtual User 1 in Scripts 1-4, Virtual User 2 in Scripts 1-4, etc. Each Virtual User has their own copy of the variable which cannot be referenced or used by another Virtual User. A Thread scope variable must be defined in every Script in the sequence that uses it. Alternatively, define a thread scope variable in the Global_Variables.INC file to include it in every Script.

[image: image16.png]Virusl Virwal Virwal - Virual
User | Urerd Userd Userd
L L

Serpe 1
Th i represens our Virual Users
Funning the same modulr Test compried of

Seripe2 4 Sarpes.

The bock rectarges repesen thescope ofa

Seriped Thvead varabie during 3 Teserun.

Serpes

Global Scope Variables

Global scope variables are accessible to any thread running any Script under the same Test Manager, that is, any Script in a particular Test-run.

A Global scope variable can be used by any Virtual User in any Script. However, it must be defined in each Script it is to be used in or included in the Global_Variables.INC file.

[image: image17.png]Serpe 1

Seripe2

Sarpe3

Serpes

Virual Virwal - Virwal - Vircal
User | Userd Userd Userd

it

fo

[

1

B
——

T moix represenes our Vrwal Users
runningthe ame modhar Test compred of
oy

“The bisck square represent the scope of
Gabal varisbe duringa s run,

[image: image18.png]Create a Variable

Note: For more information on creating variables see Variables

1

Open a Script, then select Variable > Create

shortet: lcke - in the variabl Toolser

nthe Variable Creston dialog box, enter 8 name for your new variabs. Inthis exampl the name s USERNAME,
Note: The name yau give must be # OoenSTh Datanames

Selct the Scape of your vriabs, Inthis example the selection s St Clck 8 and choose from

Local: Only sccessible tothe Virtua User runming he curent St

Sertpts Acsssibleto any Vitua User unning the curent St

Thread: Aceessible to any St run by » speciic Vil Usr,

Glabal Acssble to any Scipt and any Vel User

Note: The scape of & vriable relates o which vitua Users and Srpts can make use ofthe variabes yau creots
Selectthe Ve Source of you varabl. n this example the slection i Value s, Clck ¥ and choose from
Value lst: Enter your ou vaiabe values

File: lse xisting varable values from fe

Dotabase: lse xistng variable values stored on database

Select the arder in which the variable values are selected when a Test is run. In this example the selection is
Sequential. Chooss from:

Sequential: Assigns variable values will be consecutively fram your value list.
Random: Assigns variable values randamly from your value list

Select the data types of the variable. In this example the selection is Character. Choose from
Character: Text variable.

Integer: Numeric variable.

Click Next when you have made your selections.

In the Value List dialog box you need to enter the variable values, or names that will represent the Virtual Users you
need when the Test is run. In this example there are five values or user names entered manually within the Value List
dialog box, as described below.

[image: image19.png]10
1

12

13

14,

« You can enter the variable values you need freshand, by double-clicking inside the alus text box or click the
enter your variable value

« O, dlick Generate Values to automate the pracess. In the generation Parameters dialag box, give your values a
prefix, then specify the number of Virtual Users you want by entering a number range in the From and To text boxes.
The Step function controls

Note: If you select Fils o Database as your alus Source, clicking Generate Values takes you to different dialog
boxes from where you can locate your value sources.

Jand

After you have created your variable values, click OK to return to the Value List dislog box and use the Value List
toolbar buttons to manipulate your entries.

Clck on a value inthe st alick X to detete i, cck 210 move the fem up th tist and ek] to move the tem

down.
Click Finish when the setup process is complete.

Repeat this process to create the PASSWORD variable, which your five Virtual Users will nesd in order to access the
Which US President? WAE.
Note: This WAE requires a password to be the reverse spelling of the login name

The variables you have created are represented as text strings within the Definitions section of the Script, as illustrated
below

CHREACTER*S12 DSERNANE ("phillip®, "allan’, "david® &
. "roberc’, "domna®), SCEIPT
CmmaCTER*$12 PASSWORD ("pillinp", "nalla’, "divad" &

rebor”, "annod” |, SCRIPT

The variables are now ready to be substituted for the original login identity recorded in the Script. But before you can
do sa you must apply MUTEX lacking SCL cade ta ensure thers are na sharing violations between Virtual Users during a
Test-run

Select Capture > Syntax Check or click &1, in the Capture/Replay Toolbar, to compile the Script.

Campilatian resuls are reported in the Outaut Pane. If compilation is unsuceessful, you may need to re-model to
resolve the problem.

Itis a good idea to replay the Seript to check the activity you have recorded before you incorporate it into a Test

Select Capture > Replay or dlick
Pane

Jin the Capture/Replay Toolbar. The replay activity is displayed in the Output

Click 8| | to save the Script, or click File > Save.

[image: image20.png]Edit a Variable

Open a Script, then working in the Script Pane, find the variable you want to edit in the Definitions section.

Click an insertion point within the variable string, click Variable > Modify, and make your changes in the Variable
dialog box.

Shorteut: Click “#in the variable Toolbar,

3. cliek 81, to save the Script, or click File > Save,

[image: image21.png]Apply MUTEX Locking

Open a Script, then warking in the Seript Pane, find the login details in the Cade section

You must insert the MUTEX command before the login details referenced in the Script, which in this examle is before
the PRIMARY POST VR entry.

3. The name you give your MUTEX element is p to you, for this example LOGIN is used.

ACQUIRE MUTEX "LoSTH"
NEXT USERNAME

NEXT PASSHORD

SET 1Y_USERNANE = USERNANE
SET MY _PASSWORD = PASSWORD
RELERSE MUTEX "LOGIN"

4. The Nmxe command loads s variable with the next sequential value from the USERNAME and PASSWORD variables.
When the NEXT command is first executed, it will retrieve the first value, The variable value set is treated a5 cyclic, so
when the last valus has been retrieved, the next value retrieved is the first in the set.

The sET commands make local copies of the variable value loaded using the NEXT command.

You need to declars the MUTEX elements you have created in the Definitions section. In the current example they
should appear as below:

CHRRACTER®S12 MY_USERNAME, LOCRL
CHRRACTER®S12 MY_PASSWORD, LOCAL

7. Select Capture > Syntax Check or dlick £, in the Capture/Replay Toolbar, to compile the Seript,

Campilatian resuls are reported in the Outaut Pane. If compilation is unsuceessful, you may need to re-model to
resolve the problem.

8. Itis s good idea to replay the Script to check the activity you have recorded before you incorporate it into a Test

Select Capture > Replay or dlick

Jin the Capture/Replay Toolbar. The replay activity is displayed in the Output
Pane

5. cliek 81, to save the Script, or click File > Save,

SCL Commands

[image: image22.png]IF Command

“This command performs tests on the values of variables against other variables or literals, and transfers control to
specified label depending upon the outcome of the tests.

Alternatively, structured IF commands may be used to perform one or more commands depending upon the success or
Failure of the tests

By default, the matching is case sensitive. The strings "London” and "LONDON", for sxample, would not produce a match,
because the case af the characters is not the same. This can be averridden by specifying the , CASE_BLIND clause.

IF condition GOTO lakel

IF condition THEN comnands{si
{ELSEIF coudiéion THEN comnand(s
{EISEIF cowdsticn THEN comnand(sf
{EISE command{sd

ENDIF

[image: image23.png]DO Command

The DO and ENDDO commands allow a set of commands to be repeated a fixed number of times. The section of a Seript
to be repeated is terminated by an ENDDO command

Command Definition:

DO sndex = walusl, walusd {. steph

omnand{s;

ENDDO

index
The name of the index variable that is adjusted each time the loop executes. The adjustment is determined by the value
of the step variable. This must be an integer variable.

valuel
The starting value of the index variable. This must be sither an integer variable or an integer value.

valuez
The terminating value of the index variable. This must be an integer variable or value, and may be sither higher ar lower
than vaiuez . When the control varisble contains a value that is greater than this value (or lower if the step is negative),
the loop will be terminated.

step

An integer variable or valus determining the value by which the index variable is sltered each time the loop exscutes. If
value? is less than valuel, then the step value must be negative. If step variable is not specified, then the step value
will default to 1.

[image: image24.png]LOG Command

OpenSTA maintains an audit trail of its activity and related events. The LOG command allows the user to specify a
message to be written to the audit log. Each message in this file will have a date, time, and Thread name associated with
it

A log message may consist of any number of individual values separated by commas.
Any non-printable ASCII characters in character values are shown as periods (.) in the log. Integer values are written as
signed values, using only as many characters as are necessary.

Command Definition:

10G ralus {. walus ...}

START TIMER Command

This command starts the named stopwatch timer and writes a start timer record to the statistics log.

There is no limit to the number of stopwatch timers that can be started at the same time. However, if a timer is started twice without being stopped in the interim, the first timer is effectively cancelled and thrown away when it is restarted.

A stopwatch timer is stopped by the END TIMER command.

END TIMER Command

This command ends the named stopwatch timer and writes an end timer record to the statistics log, even if the timer is already ended.

A stopwatch timer is started by the START TIMER command.

ACQUIRE MUTEX Command

This command acquires exclusive access to a shared resource, known as a mutex. The mutex is identified by its name and scope (which must be either LOCAL or TEST-WIDE). A test-wide mutex is one that is shared by all Scripts running as part of a distributed test; a local mutex is only shared between Scripts running on the local node.

By default, if an attempt is made to acquire a mutex that has already been acquired by another Script (within the same scope), then the thread will be suspended until the mutex is released. However, if a timeout period is specified, this represents the maximum number of seconds that OpenSTA will wait for the mutex to be released before timing out the request. A period of zero indicates that the request should be timed out immediately if the mutex has been acquired by another Script.

The ON TIMEOUT GOTO tmo-label clause can be specified to define a label to which control should be transferred if the request times out. In addition, the ON ERROR GOTO err-label clause can be specified to define a label to which control should be transferred in the event of an error, or if the request times out and there was no ON TIMEOUT GOTO tmo-label clause.

Command Definition:

ACQUIRE {scope} MUTEX mutex-name

{,WITH TIMEOUT period {,ON TIMEOUT GOTO tmo-label}}

{,ON ERROR GOTO err-label}

RELEASE MUTEX Command

This command releases a named mutex. The mutex to be released is identified by its name and scope, which must correspond to the values specified on the corresponding ACQUIRE MUTEX command.

The ON ERROR GOTO err-label clause can be specified to define a label to which control should be transferred in the event of an error. Note that an error always occurs if the Script that issues the RELEASE MUTEX request has not previously acquired it.

Command Definition:

RELEASE {scope} MUTEX mutex-name

{,ON ERROR GOTO err-label}

LOAD RESPONSE_INFO BODY Command

This command loads a character variable with all or part of the data from an HTTP response message body for a specified TCP connection. It is used after a GET, HEAD or POST command.

OpenSTA will automatically wait until any request on the specified connection ID is complete before executing this command. It is not necessary for the Script to do this explicitly.

If the character data requested is too big to fit into the target variable, it will be truncated. For a response message body containing an HTML document, the optional WITH identifier clause can be used to specify part of the structured document using a special syntax.

The optional RETURNING STATUS load-status clause can be used to specify the integer variable to hold one of two values indicating whether the command succeeded or failed. When RETURNING STATUS is specified, any current ON ERROR action is disabled.

By default, if an error occurs, an error message is written in the audit log and the virtual user will continue. However, if error trapping is enabled, control will be transferred to the error-handling code.

Command Definition:

LOAD RESPONSE_INFO BODY ON conid INTO variable

{,WITH identifier}

{,RETURNING STATUS load-status}

Test Development
After planning your Test, use Commander to coordinate the Test development process.

The contents and structure of your Test will depend on the type of Test you are conducting, the nature of the system you are targeting and the aims of your performance Test. In its simplest form a Test can consist of just one Task Group running a single Collector or a Script. However, to produce a fully automated performance Test that accurately simulates the test scenario you want, as well as producing the results data required, it is usually necessary to develop a more detailed Test structure.

Script and Collector Tasks are contained by Task Groups in a Test. Task Groups enable you to control when Tasks run and how they operate during a Test-run. A Test can include one or more Collector-based Task Groups, one or more Script-based Task Groups or a combination of both, depending on whether you are developing an HTTP/S load Test or a production monitoring Test. Add Scripts to generate the HTTP/S load levels required against target systems during a Test-run. Add Collectors to monitor and record performance data from Hosts.

The Task Groups that comprise a Test can be enabled or disabled, before or during a Test-run. Disabling the Script-based Task Groups means that no load is generated when the Test is run. This gives you the ability to use the same Test within both load Test and production monitoring scenarios and enables you to directly compare the performance of a target system within these two environments. After you have added the Scripts and Collectors you need and applied the Task Group settings required, the Test is ready to run.

Tests can be run using networked computers on remote Hosts to execute the Task Groups that comprise a Test. Distributing Task Groups across a network enables you to utilize the processing resources of multiple networked computers. It is then possible to run HTTP/S load Tests that generate realistic heavy loads simulating the activity of many users. In order to do this, HTTP/S Load must be installed on each Host and the OpenSTA Name Server must be running and configured to specify the Repository Host for the Test. For more information on configuring the OpenSTA Name Server to run a distributed Test, see Distributed Tests.

During a Test-run you can monitor Task Group replay from within the Test Pane. Then display the results collected after a Test-run is complete to assist you in analyzing and improving the performance of target systems.

Test Creation

After you have created the Scripts and Collectors you need, you are ready to create a new Test. Use the right-click menu function associated with the Tests folder in the Repository Window, or select File > New Test > Tests in the Menu Bar. Give your Test a name, then double-click the new Test , in the Repository Window to open it.

In Commander an open Test is represented as a table which is displayed in the Test Pane. This is the workspace where you can develop the contents of a Test by adding the Scripts and Collectors you need from the Repository. Select them individually working from the Repository Window. Drag and drop them into the Test Pane in the required order.

When you add a Script or Collector to a new row in the Test table, a new Task and Task Group are automatically created. Select a Task Group table cell and apply the settings you require using the Properties Window located at the bottom of the Test Pane to control when a Task Group starts, the Host used to run the Task Group and the load generated by Script-based Task Groups when a Test is run. Click , in the toolbar to hide and display the Properties Window.

There is only a single instance of the Scripts and Collectors you create. They are included in Tests by reference which means they can be included in many different Tests or in the same Test as separate Tasks. Deleting a Test has no affect on the Scripts and Collectors it contains, and similarly, removing Tasks from a Test does not delete them from the Repository. Any changes you make to Scripts and Collectors are immediately reflected in all the Tests that use them. The Scripts and Collectors that you incorporate in a Test can be removed by overwriting them with new selections or by deleting them from the Test Pane.

Make use of the Duplicate a Task Group function to duplicate a Task Group then edit the Task Group Definition to speed up the Test development process. You can duplicate or delete a Task Group by right-clicking on a Task Group and selecting the required popup menu option.

Tests are saved as .TST files and are stored in the Repository. A Test name must be defined according to the rules for OpenSTA Datanames, with the exception that the name can be up to 60 characters long.

As part of the Test creation process you can make use of the single stepping functionality provided to check that your HTTP/S load Tests run as required during replay. For more information see Single Stepping HTTP/S Load Tests.

If you are developing a Test which includes Scripts that run in sequence within the same Task Group you need to model the Scripts for the Task Group to replay correctly when the Test is run. If your WAE uses cookies or issues session identities, then each Script you create will contain a unique identity that has no connection to the other Scripts included in the Task Group. You need to establish a connection between the Scripts by modeling them.

The Test Pane
Use the Test Pane to create and edit a Test, then apply the Task Group settings you require to control how they behave during a Test-run. Run and monitor the Test-run then display your results for analysis.

The Test Pane is displayed in the Main Window when you open a Test by double-clicking a new Test , or an existing Test , in the Repository Window.

The Test Pane comprises three sections represented by the following tabs:

Configuration: This is the default view when you open a Test and the workspace used to develop a Test. Use it in combination with the Repository Window to select and add Scripts and Collectors. It displays the Test table which has categorized column headings that indicate where Script and Collector Tasks can be placed and the Task Group settings that apply to the contents of the Test.

Select a Task Group cell to view and edit the associated settings using the Properties Window displayed below the Test table. For more information, see Tasks and Task Groups.

Monitoring: Use this tab to monitor the progress of a Test-run. Select the display options you want from the Monitoring Window, including a Summary and data for individual Task Groups. For more information, see Running Tests.

Results: Use this tab to view the results collected during Test-runs in graph and table format. Use the Results Window to select the display options available which are dependent on the type of Test you are running. For more information, see Results Display.

Tasks and Task Groups

Work from the Repository Window to create new Tests and to open existing ones. Its default location is on the left-hand side of the Commander Main Window,

The Repository Window displays the contents of the Repository and functions as a picking list from where you can select the Scripts and Collectors you want to include in a Test. Use it in conjunction with the Configuration tab of the Test Pane to develop the contents of a Test. Select a Script or Collector from the Repository Window then drag and drop it on to a Task column in the Test table.

The Scripts and Collectors you add to a Test are known as Tasks which are contained within Task Groups. When you add a Script or Collector to a new row in the Test table a new Task and Task Group are automatically created. Each Task Group occupies a single row within the Test table and can be one of two types, either Script-based or Collector-based. A Script-based Task Group can incorporate one Script or a sequence of Script Tasks. Collector-based Task Groups contain a single Collector Task.

Task Groups enable you to control the behavior of the Scripts and Collectors they contain during a Test-run. Select a Task Group cell and apply the settings you require using the Properties Window of the Configuration tab, located at the bottom of the Test Pane. Task Group settings control when a Task Group starts, the Host used to run the Task Group and the load generated by Script-based Task Groups when a Test is run.

When you add a Script or Collector to a Test, you can apply the Task Group settings you require or you can accept the default settings and return later to edit your settings.

The Task Group cells in the Test table are dynamically linked to the Properties Window below, select them one at a time to display and edit the associated Task Group settings in the Properties Window.

Select the Start or Host cells in a Task Group row to control the Schedule and Host settings. Script-based Task Groups and the Script Tasks they contain have additional settings associated with them. Select the VUs and Task cells to control the load levels generated when a Test is run.

Use the Disable/Enable a Task Group option to control which Task Groups are executed when a Test is run. This is a useful feature if you want to disable Script-based Task Groups to turn off the HTTP/S load element. The Test can then be used to monitor a target system within a production scenario.

Task Group Settings

Schedule Settings: apply to Script-based and Collector-based Task Groups

Schedule settings enable data to be collected, or an HTTP/S load to be applied, over specific periods by controlling when Task Groups start and stop during a Test run. Click on the Start cell in a Task Group and use the Properties Window to specify your Schedule settings. Once a Test is running, Schedule settings cannot be edited, but they can be overridden manually using the Start and Stop buttons that appear in the Status column of a Task Group.

The default setting for a Task Group to start is when the Test is run. The Scheduled option starts a Task Group after the number of days and at the time you set. The Delayed option starts a Task Group after the period of time you set, relative to when the Test was started.

There are three options for stopping Task Groups. Manually, means that the Task Group will run continuously until you intervene to end it using the Stop button in the Status column of the Task Group that becomes active during a Test run. You can also schedule a Task Group to stop after a fixed period of time and for Script-based Task Groups only you can instruct the Task Group to stop after completing a number of iterations.

For more information, see Edit the Task Group Schedule Settings.

Host Settings: apply to Script-based and Collector-based Task Groups

Specify the Host computer you want to use to run a Task Group during a Test-run. Click on the Host cell in a Task Group and use the Properties Window to select a Host.

Virtual User Settings: apply to Script-based Task Groups only

The load generated against target Web Application Environments (WAEs) during a Test-run is controlled by adjusting the Virtual User settings. Click on the VUs cell in a Script-based Task Group and use the Properties Window to specify your Virtual User settings.

Specify the number of Virtual Users you want to run the Task Group to control the HTTP/S load generated when the Task Group is run. Logging levels can be set here to specify the amount of HTTP/S performance statistics gathered from the Virtual Users running the Task Group. Select the Generate Timers option to record the time taken to load each Web page specified in a Script by each Virtual User running the Script.

Use the Batch Start Option to ramp up the load you generate by controlling when the Virtual Users you have assigned to a Task Group run. This is achieved by starting batches of Virtual Users at intervals over a period of time, with a delay between the start of each batch period.

For more information, see Specify the Virtual Users Settings for a Script-based Task Group.

Task Settings: apply to Script Tasks only

Edit the Task settings to control how many times a Script is run. Click on a Task cell in a Script-based Task Group and use the Properties Window to specify your Task settings.

You can schedule a Script Task to stop after a fixed period of time or after completing a number of iterations. You can also specify a Fixed or Variable delay to be applied between each Script iteration completed by a Virtual User during a load Test.

[image: image25.png]Distributed Tests

HTTP/S Load supplies a distributed software testing architecturs based on CORBA which enables you to utilize remote Host
computers ta run the Task Groups that comprise a Test, & Task Group can be run by a Task Group Executer process an
remate Host or the Repositary Host during a Test-run.

Define the Host you want ta run a Task Group when you add a Seript or Collectar to a Test. Open the Configuratian tab of the
Test Pane, then slick on the Hast column table cell in the selected Task Group and using the Praperties Window to select a
Host, for more information, see Select the Host Used to Run a Task Group.

0OpensSTA Name Server

Before you can start a distributed Test the Hosts you have chosen to run the Task Groups must have the OpenSTA Name
Server installed, running and correctly configured, Use the Name Server Configuration utilty to configure the OpenSTA Name
Server settings on all the Hosts running Windows in your Test network.

Before starting a Test-run, make sure that the OpenSTA Name Server is g on the Repository Host and that the

Repository Host setting points to itself. You can configure this by right-clicking 3 , in the Task Bar and selecting the
Configure option. Then specify the Repository Host setting by typing localhost, the computer name or the P address of the,
Repositary Hast in the Repasitory Host text bax. You will need to restart the OpenSTA Name Server to implement the.
configuration changes you make.

Then configure the remote Hosts you are using to run your Task Groups. The Repository Host setting must point to the
Repository Host, which is the machine from where the Test will be run.

When a Host is running Cammander, the OpenSTA Name Server and the Name Server Configuration uility should be running
by default, because they are sstup to launch automatically when you launch Windows. When they are both running, they are,

represented in the Task bar by the Name Server Configuration utiity icon, 89 . 1f no icon appears, you need to launch the
OpenSTA Name Server and configure it before running a Test.

Launch the OpenSTA Name Server and the Name Server Configuration Utility

· Click Start > Programs > OpenSTA > OpenSTA Name Server.

Or,

1. Click Start > Run.

2. Enter the application path and program file:

\Program Files\OpenSTA\Server\DaemonCFG.exe

or click Browse, then locate and double-click the program file.

3. Click OK.

[image: image26.png]Run a Test

1. In the Repository Window, double-dlick (. Tests to open the folder and display the Tests contained.

Double-click the Test # you want ta run, to open it the Test Pane
heck the Test cantains the Seripts and Callectars you want and that the Task Group seftings are correct, then dlick

in the toolbar to run the Test, or click Test > Execute Test.
Note: When you run a Test the Seripts it contains are automatically compiled. If there are errors during compilation the
Carmpile Errars dialag bax appears displaying the lacation and name of the Seript that failed and details of the SCL

You can export these error messages to a text editor far easier viewing by right-clicking within the Details section of the
Compile Errors dialog box, then selecting, copying and pasting the text. You can also make use of the sinale stepping.
functionality available to help identify errors that may occur during a Test-run

After your Test has been compiled successfully the Starting Test dialog box appears, which displays a brisf status report
an the Test-run.

When the Test is running the entry in the Test Status bax at the top of the Manitaring Window reads ACTIVE

Tip: Click on the 6" Monitoring tab within the Test Pane during a Test-run and select the Task Groups required, to
monitor the perfarmance of target WAES and Hasts in graph and table format.

On completion of the Test-run, dlick the Bl Results tab within the Test Pane, to display the results generated

Monitoring a Test-run

During a Test-run all Task Groups, the Tasks they contain and summary information can be monitored using Commander, from the Monitoring tab of the Test Pane. Open the Test that is currently running from the Repository Window, then click the [image: image27.png]

 Monitoring tab in the Test Pane. Use the Monitoring Window, which is displayed by default on the right-hand side of the Main Window, to pick the options you want to display in the workspace of the Test Pane.

The display options listed in the Monitoring Window include all the Task Groups defined in the Test, plus a Summary display option which you can select to display an overview of Test-run activity that includes the Task Group name, type and the length of time it has been running. The display options available depend on the type of Test you are running. If your Test includes Scripts the Total Active Users graph is populated with HTTP-related data. The type of Collectors you include in a Test and the data collection queries they define also affects the display options available. Adding Collectors to a Test enhances your monitoring options by enabling you to select and monitor the data collection queries they define. Open up a Task Group folder that contains the Collector you want to monitor, then select the queries you want to display using the Monitoring Window.

When you run a Test the following display options are available for monitoring:

 Summary: Provides a summary of Test-run and Task Group activity including Task Group name, status and duration, HTTP data, Virtual User and Task-related details.

 Total Active Users: Displays a graph indicating the number of active Virtual Users.

 Error Log: Enables you to monitor errors as they occur giving details of the Time, Test Name, Location and Message for each error.

 Collector-based Task Groups: Performance Anomalies and data collection queries.

 Script-based Task Groups: Task details and the number of Virtual Users running.

After you have selected your monitoring display options, you can hide the Monitoring Window to increase the workspace area available for displaying your data.
Click [image: image28.png]

, in the toolbar to hide and display the Monitoring Window.

Use the Task Monitor Interval function to control the frequency at which performance data is collected and returned to Commander for display. Data collection takes up processing resources and can affect the performance of the Test network so it is best to set the Task Monitor Interval to a high value. This function relates to HTTP data and does not affect the data collection interval or polling time you set in Collectors.

If you encounter errors during a Test-run make use of the single stepping functionality provided to check your Tests and to help resolve them. You can monitor the replay of Script-based Task Groups included in a Test and check the HTTP data returned.

Results Display Overview

HTTP/S Load provides a variety of data collection and display options to assist you in the analysis of Test results. Running a Test and displaying the results enables you to identify whether the Web Application Environments (WAEs) under test are able to meet the processing demands you anticipate will be placed on them. After a Test-run is complete use Commander to control which results are displayed and how they are presented, in order to help you analyze the performance of target WAEs and the network used to run the Test.

Open the Test you want from the Repository Window and click on the [image: image29.png]

Results tab in the Test Pane, then choose the results you want to display using the Results Window. Depending on the category of results you select, data is displayed in graph or table format. You can choose from a wide range of tables and customizable graphs to display your results which can be filtered and exported for further analysis and print. Use the Results Window to view multiple graphs and tables simultaneously to compare results from different Test-runs.

When a Test is run a wide range of results data is collected automatically. Virtual User response times and resource utilization information is recorded from all Web sites under test, along with performance data from WAE components and the Hosts used to run the Test. Results categories include the Test Configuration option which presents a brief description of the Test and the Task Groups settings that applied during a Test-run. The Test Audit log records significant events that occur during a Test-run and the HTTP Data List records the HTTP/S requests issued, including the response times and codes for every request. The Timer List option records the length of time taken to load each Web page defined in the Scripts referenced by a Test.

Creating and referencing Collectors in a Test helps to improve the quality and extend the range of the results data produced during a Test-run. Collectors give you the ability to target the Host computers and devices used to run a Test and the back-end database components of WAEs under test, with user-defined data collection queries. Use NT Performance and SNMP Collectors to collect data from Host devices within target WAEs or the test network.

The range of results produced during a Test-run can depend on the content of the Scripts that are referenced by a Test. For example Report and History logs are only produced if the Scripts included have been modeled to incorporate the SCL commands used to generate the data content for these logs.

[image: image30.png]Results Tab

Results are stored in the Repository after a Test-run is complete. You can view them by working from the Repository Window

ta apen the Test you want, then click on the Il Results tab in the Test Pane. Use the Results Windaw to select the results you
want to view in the workspace of the Test Pane. You can reposition the Results Window by floating it over the Main Window to
give yourself mars raom for results display, or close it ance you have selected the results options you want to view,

The Results Tab of the Test Pane

Tozze buzon to hdeidpky the

CRCEAL I ———

1L Cick 1o close the Resules Wirnow

zl:osnnooonhonosooE

Fier bucton o contrl resuls
asply

Select resuls ptiors from the st
0 dsplay deselect o dose

Ik] expanda st run fober,
alkkw Elcolpe

Resuls Window

Righ<lick nempry workspace o
Vi and select depby optrs

Results Tab Display Options

Graphs can be customized to improve the presentation of data by right-clicking within a araph then selecting Customize. This
function includes options that enable you to madify the graph style from the defaul line plot to a vertical bar, s well as
contralling the colar of elements within the araph display.

You can control the information displayed in some graphs and tables by fitering the data they represent. Right-click within &

araph or table, then select Filter or Filter URLS, or dlick the Filter button . in the toolbar and make your slection. You can
als0 opt to export results data for further analysis and printing. Right-click and select Export to Excel or Export from the

You can also 200m in on a araph by clicking and dragging over the area of the graph you want to study. Uss the Windows
aption to control the presentation af results options in the Test Pane, or right-click within the empty workspace of the Test Pane
to acoess these functions as illustrated in the diagram above.

[image: image31.png]Display Test Audit Log Data

1. Open a Test and dlick the Ml Results tab in the Test pane

The Results Window opens automatically listing all Test-runs associated with the current Test. Results are stored in date
and time stamped folders.

2. In the Results Window, click
results.

3. Click the Test Audit Log results option in the lst
Audit information is displayed in the Resuls tab in table format:

ext to a Test-run folder or double-click on it to open the folder and display the available

Time Stamp. User D! Scipt Lne# [Message
15/03/01 030508 D\Program Files\Open TA\E ngines\BD_SY8_
15/03/01 03,0508 Start Test BD_SYB_TEST,

15/03/01 03,0508 D:\Program Files\OpenS TA\E ngines\BD_S8_
15/03/01 03,0508 Start Test BD_SYB_TEST_1,

15/03/01 090537 192_166_1_813480 BD_SYB_TEST_1 Start S,

15/03/01 090537 192_166_1_813430 BD_SYE Start S,

15/03/01 090547 192_166_1_813481 BD_SYB_TEST_1 Start S,

15/03/01 030547 192_166_1_813481 BD_SYE Start S,

15/03/01 030758 192_166_1_813480 | BD_SYE End Script,

15/03/01 090758 192_166_1_813480 BD_SYB_TEST_1 End Seript,

15/03/01 030848 192_166_1_813481 BD_SYB End Seript,

15/03/01 090848 192_166_1_813481 BD_SYB_TEST_1 End Seript,

15/03/01 03,0859 End Test BD_SYB_TEST_1,

15/03/01 030910 End Test BD_SYB_TEST,

Tip: Display multiple graphs and tables concurrently to compare results using the Results Window.
Note: Click & ,in the Title Bar of a graph ar table to close it or deselect the display aptian in the Results Window,

Tip: You can export the data displayed in the Test Audit Log by right-clicking within the table and selecting Export. The
data is exported in CSV format.

HTTP Data List

The HTTP Data List stores details of the HTTP requests issued by the Scripts included in a Test when it is run. This data includes the response times and codes for all the HTTP requests issued. The amount of HTTP data recorded depends on the Logging level specified for a Script-based Task Group when you created the Test and defined the Virtual User settings to be applied. The Logging level setting controls the number of Virtual Users that statistics are gathered for and can be edited from the Configuration tab of the Test Pane.

The data is presented in a table and can be sorted by clicking on the column headings to reverse the display order of the data entries. These results can also be filtered by right-clicking inside the table and selecting the Filter option. Use the Export right-click menu option to export data in .CSV text file format which allows them to be imported into other data analysis and report generating tools.

[image: image32.png]Display the HTTP Data List

1. Open a Test and dlick the Ml Results tab in the Test pane

The Results Window opens automatically listing all Test-runs associated with the current Test. Results are stored in date
and time stamped folders.

2. In the Results Window, click
results.

3. Click the HTTP Data List display option in the list to open it in the Test Pane.
HTTP Data List information is displayed in table format:

ext to a Test-run folder or double-click on it to open the folder and display the available

(O[]
Time Stamp. Fiesponse Time | Response Code | Reply Size
1 15Mal1 030537 192 1681 6. GET hipi//bkyls. 12 200 1023
2 15Mad1 030538 192166 GET htp//bky/s. 1 2m 4106
3 15Ma01 030538 192166 GET htp://bky/s. . 1 2m 117
4 15Mad1 030533 192166 GET htp://bky/s.. O 2m 1004
5 15Ma01 080533 1921661 8.. GET hip//Aky/s. O 2m 776
6 15Mad1 030533 192166 GET htp://bky/s.. O 2m)
7 15Mad1 030533 192166 GET htp//bky/s. 1 2m 6373
8 15Ma01 030540 192165 GET htp//bky/s. . 1 2m 814
9 15Mar01 030540 192166 GET htp//bky/s. . 1 2m 775
10 15Mar01 030545 192 166 GET htp//bky/s. . 1 2m £
11 15Mar01 030545 1921661 6-.. GET htip//bky/s.. 1 2m 205
12 15Mard1 030547 192166 GET htp://bky/s.. O 2m 1023
13 15Mar01 030548 192 166 GET htp://bky/s.. O 2m M7
14 15Mar01 030548 192 168 GET htp://bky/s.. O 2m 4106
15 15Mar01 030548 192 166 GET htp://bky/s.. O 2m)
16 15Mar01 020543 192 166 GET htp://bky/s.. O 2m 7
17 15Mar01 00543 1921661 8... GET hip//Aky/s.. O 2m 6373
18 15Mar01 030543 192 166 GET htp//bky/s. 1 2m 7745
19 15Mar01 030543 192 166 GET htp://bky/s.. O 2m 1004
0 15Mar01 030550 192 166 GET htp://bky/s.. O 2m /14
21 15Mard1 030551 192166 GET htp://bky/s.. | 50942 2m 1034
22 15Ma01 030555 192166 GET htp://bky/s.. O 2m £
23 15Ma01 020556 1921661 8... GET hip//Aky/s. O 2m 205
20 15Mar01 030600 192 165 GET htp://bky/s.. 91187 2m 1034
2 15Mar01 030758 192166 GET htp//bky/s. | 1 2m %B
% 15Mar01 030848 192166 GET htp//bky/s. 1 20 E=3

“Tip: Right-click within the table and use the menu options to Filter and Export the data
Note: Click & ,in the Title Bar of a graph ar table to close it ar deselect the display aptian in the Results Window,

[image: image33.png]Display Custom Collector Graphs

1. Open a Test and dlick the Ml Results tab in the Test pane
The Results Window opens automatically lsting all Test-runs associated with the current Test. Results are stored in date
and time stamped folders.
In the Results Window, double-click an a Test-run folder or i
Glick the Custom NT or Custom SNMP from the lst results aption ta apen your selection in the Test Pane
The Custom NT Performance Graph is displayed below

to open it and display the available results

Custom NT Performance

Rghiclckinthe graphand
sl rom the aprans
izl
L Cistomize,

Export to Excel and Filter.

Alldaa collction quaries
s i included na Tstare fsiad
here, slorg with the IP adress
ofthe taget Host.

Note: Graphs are displayed in the default line plat style. Right-click within a graph and select Customize from the
menu to change their appearance.

“Tip: Right-click within the graph and use the menu options to Customize, Export to Excel and Filter the data
Tip: Display multiple graphs and tables concurrently to compare results using the Results Window.
Note: Click & ,in the Title Bar of a graph ar table to close it or deselect the display aptian in the Results Window,

Open STA Courseware
37 of 37
Softsmith Infotech

_1199713128.psd

